Журнал LinuxFormat - перейти на главную

КТО УНАСЛЕДУЕТ БИЗНЕС-ИМПЕРИЮ ПРИГОЖИНА

Материал из Linuxformat
(Различия между версиями)
Перейти к: навигация, поиск
(9 Локаль­ная сеть)
(Про­цес­со­ры)
Строка 64: Строка 64:
  
 
Как и с дли­ной сло­ва, ко­ли­че­­ст­во ядер нель­зя про­сто ум­но­жить на так­то­вую час­то­ту, что­бы по­лу­чить мощ­ность про­цес­со­ра. За­да­ча мо­жет эф­фек­тив­но ис­поль­зо­вать несколь­ко ядер, толь­ко ес­ли она раз­де­ле­на на несколь­ко по­то­ков. Это оз­на­ча­ет, что раз­ра­бот­чик раз­бил ее на от­дель­ные под­про­грам­мы, ка­ж­дая из ко­то­рых мо­жет вы­пол­нять­ся на от­дель­ном яд­ре. Не все за­да­чи под­да­ют­ся та­ко­му раз­биению. Про­грам­ма с одним по­то­ком бу­дет ра­бо­тать на мно­го­ядер­ном про­цес­со­ре с той же ско­ро­стью, что и на од­но­ядер­ном – од­на­ко две од­но­по­то­ко­вые про­грам­мы на мно­го­ядер­ном про­цес­со­ре бу­дут ра­бо­тать бы­ст­рее, чем на од­но­ядер­ном. Нам пред­став­ля­ет­ся, что у ком­пь­ю­те­ра есть некая па­мять, ко­то­рую он де­лит ме­ж­ду за­пу­щен­ны­ми про­грам­ма­ми; но на прак­ти­ке все чуть сложнее. Па­мять – это не еди­ная сущ­ность, а ие­рар­хия раз­лич­ных уровней. Обыч­но чем бы­ст­рее па­мять, тем она до­ро­же, по­это­му в боль­шин­ст­ве ком­пь­ю­те­ров есть малый объ­ем очень бы­ст­рой па­мя­ти, на­зы­ва­мой кэ­шем, опе­ра­тив­ная па­мять го­раз­до боль­ше­го объ­е­ма и раз­дел под­кач­ки на же­ст­ком дис­ке, слу­жащий для про­грамм и функ­ций чем-то вро­де пе­ре­полнения па­мя­ти. Для про­цес­со­ров наи­бо­лее ва­жен кэш, по­то­му что он вве­ден в схе­му: мож­но до­ба­вить до­полнитель­ную опе­ра­тив­ную па­мять и из­менить раз­мер раз­де­ла под­кач­ки, но объ­ем кэ­ша фик­си­ро­ван. Сам кэш раз­бит на уровни, и бо­лее низ­кие уровни мень­ше по объ­е­му и бы­ст­рее, чем бо­лее вы­со­кие.
 
Как и с дли­ной сло­ва, ко­ли­че­­ст­во ядер нель­зя про­сто ум­но­жить на так­то­вую час­то­ту, что­бы по­лу­чить мощ­ность про­цес­со­ра. За­да­ча мо­жет эф­фек­тив­но ис­поль­зо­вать несколь­ко ядер, толь­ко ес­ли она раз­де­ле­на на несколь­ко по­то­ков. Это оз­на­ча­ет, что раз­ра­бот­чик раз­бил ее на от­дель­ные под­про­грам­мы, ка­ж­дая из ко­то­рых мо­жет вы­пол­нять­ся на от­дель­ном яд­ре. Не все за­да­чи под­да­ют­ся та­ко­му раз­биению. Про­грам­ма с одним по­то­ком бу­дет ра­бо­тать на мно­го­ядер­ном про­цес­со­ре с той же ско­ро­стью, что и на од­но­ядер­ном – од­на­ко две од­но­по­то­ко­вые про­грам­мы на мно­го­ядер­ном про­цес­со­ре бу­дут ра­бо­тать бы­ст­рее, чем на од­но­ядер­ном. Нам пред­став­ля­ет­ся, что у ком­пь­ю­те­ра есть некая па­мять, ко­то­рую он де­лит ме­ж­ду за­пу­щен­ны­ми про­грам­ма­ми; но на прак­ти­ке все чуть сложнее. Па­мять – это не еди­ная сущ­ность, а ие­рар­хия раз­лич­ных уровней. Обыч­но чем бы­ст­рее па­мять, тем она до­ро­же, по­это­му в боль­шин­ст­ве ком­пь­ю­те­ров есть малый объ­ем очень бы­ст­рой па­мя­ти, на­зы­ва­мой кэ­шем, опе­ра­тив­ная па­мять го­раз­до боль­ше­го объ­е­ма и раз­дел под­кач­ки на же­ст­ком дис­ке, слу­жащий для про­грамм и функ­ций чем-то вро­де пе­ре­полнения па­мя­ти. Для про­цес­со­ров наи­бо­лее ва­жен кэш, по­то­му что он вве­ден в схе­му: мож­но до­ба­вить до­полнитель­ную опе­ра­тив­ную па­мять и из­менить раз­мер раз­де­ла под­кач­ки, но объ­ем кэ­ша фик­си­ро­ван. Сам кэш раз­бит на уровни, и бо­лее низ­кие уровни мень­ше по объ­е­му и бы­ст­рее, чем бо­лее вы­со­кие.
 +
{| class="standart"
 +
|+ '''Шаг за шагом: ''' 
 +
| [[Файл: 302299.png| center |thumb|300px| Ви­део­кар­та (Vdrift), Кад­ров в се­кун­ду]]
 +
| [[Файл:302324.png | center |thumb|300px|Ско­рость ОЗУ, МБ/с ]]
 +
|[[Файл: 302331.png| center |thumb|300px| Ста­ти­че­ский Apache. За­про­сов в се­кун­ду]]
 +
|-
 +
| [[Файл: 302291.png| center |thumb|300px|Ите­ра­ций в се­кун­ду. Graphics Magic Sharpen
 +
Graphics Magic Blur ]]
 +
| [[Файл:302316.png | center |thumb|300px| John The Ripper. Про­ве­рок в се­кун­ду (в млн)]]
 +
|[[Файл: 302308.png| center |thumb|300px| МБ/с. Чте­ние с дис­ка 2 ГБ с IoZone,Чте­ние с дис­ка 4 ГБ с IoZone]]
 +
|}
  
 
В све­те все­го это­го нелег­ко по­нять, на­сколь­ко про­из­во­ди­тель­ны­ми раз­лич­ные кон­фи­гу­ра­ции мо­гут быть в раз­ных си­туа­ци­ях. Вме­сто то­го, что­бы по­про­бо­вать по­нять, как ком­пь­ю­те­ры бу­дут ра­бо­тать с раз­ны­ми кон­фи­гу­ра­ция­ми про­цес­со­ра, мы за­пустим се­рию тес­тов и уви­дим, как они ра­бо­та­ют. Про­цес­со­ры, ко­то­рые мы бу­дем тес­ти­ро­вать, та­ко­вы:
 
В све­те все­го это­го нелег­ко по­нять, на­сколь­ко про­из­во­ди­тель­ны­ми раз­лич­ные кон­фи­гу­ра­ции мо­гут быть в раз­ных си­туа­ци­ях. Вме­сто то­го, что­бы по­про­бо­вать по­нять, как ком­пь­ю­те­ры бу­дут ра­бо­тать с раз­ны­ми кон­фи­гу­ра­ция­ми про­цес­со­ра, мы за­пустим се­рию тес­тов и уви­дим, как они ра­бо­та­ют. Про­цес­со­ры, ко­то­рые мы бу­дем тес­ти­ро­вать, та­ко­вы:

Версия 06:49, 6 октября 2018

Содержание

Об­нов­ляй­тесь!

301495.png

Ко­ман­да LXF це­лый ме­сяц тес­ти­ро­ва­ла ма­те­рин­ские пла­ты, про­цес­со­ры, твер­до­тель­ные дис­ки и ви­део­кар­ты, что­бы убе­речь вас от это­го.

Когда вы раз­мыш­ляе­те, что никто из нас так не при­ки­пел бы к Linux, ес­ли бы не «же­ле­зо», на ко­то­ром он ра­бо­та­ет, вы уде­ляе­те ма­ло внимания плат­фор­ме x86. Воз­мож­но, де­ло в том, что Linux стал весь­ма ста­би­лен и от­лич­но ра­бо­та­ет на бо­лее ста­рых уст­рой­ст­вах, и нам ред­ко при­хо­дит­ся об этом ду­мать.

Но есть, од­на­ко, и дру­гая при­чи­на. И это со­вмес­ти­мость и про­из­во­ди­тель­ность. Хо­тя со­вмес­ти­мость уже не яв­ля­ет­ся та­кой про­бле­мой, как бы­ло 10 лет, никто из нас не за­хо­чет ра­зо­рить­ся на «же­ле­зо» с со­мнитель­ной под­держ­кой Linux, будь то све­жий чип­сет от Intel, ви­део­кар­та или твер­до­тель­ный же­ст­кий диск. По­это­му мы взя­ли столь­ко ком­понен­тов, сколь­ко смог­ли, и про­тес­ти­ро­ва­ли их на со­вмес­ти­мость и про­из­во­ди­тель­ность.

Что­бы сде­лать наш об­зор бо­лее прак­тич­ным, мы ре­ши­ли не ка­сать­ся пе­реднего края тех­но­ло­гий – про­цес­со­ров и ви­део­карт. И не толь­ко что­бы дать Linux пе­ре­дыш­ку на ох­ват этих уст­ройств, но и по­то­му, что со вре­менем це­ны на них ста­нут бо­лее ра­зум­ны­ми. Мы так­же ста­ра­лись рас­ска­зать о кон­ку­ри­рую­щих про­дук­тах, на­при­мер, ви­део­кар­тах AMD и Nvidia и про­цес­со­рах Intel и AMD, в на­де­ж­де по­лу­чить бо­лее раз­но­сто­ронний об­зор то­го, что ра­бо­та­ет хо­ро­шо, а что мо­жет не ра­бо­тать. Мы про­тес­ти­ро­ва­ли разницу в про­из­во­ди­тель­но­сти ме­ж­ду 32-бит­ны­ми и 64-бит­ны­ми плат­фор­ма­ми, про­ана­ли­зи­ро­ва­ли улуч­шения фай­ло­вой сис­те­мы, а имен­но кэш на осно­ве твер­до­тель­но­го же­ст­ко­го дис­ка, и про­ве­ри­ли, на­сколь­ко хо­ро­ши от­кры­тые драй­ве­ры ви­део­карт. И хо­тя мы не да­ем кон­крет­ных ре­ко­мен­да­ций по по­во­ду по­куп­ки тех или иных уст­ройств, мы чет­ко го­во­рим, что ра­бо­та­ет, а что нет.

LXF161.feat hardware.mo opt2.png

«Же­ле­зо»: Пол­ное ру­ко­во­дство

Начнем с уст­ройств, к ко­то­рым под­клю­ча­ют­ся все осталь­ные ком­понен­ты.

0 Ма­те­рин­ская пла­та

Ма­те­рин­ские пла­ты бы­ва­ют все­воз­мож­ных форм и раз­ме­ров, но боль­шин­ст­во от­ве­ча­ют форм-фак­то­ру ATX. Он оп­ре­де­ля­ет, где долж­ны на­хо­дить­ся разъ­е­мы пи­тания и где пла­та кре­пит­ся к кор­пу­су. Боль­шин­ст­во плат бы­ли стан­дарт­но­го раз­ме­ра ATX, и их по-прежнему пред­по­чи­та­ют мно­гие, бла­го­да­ря оби­лию воз­мож­но­стей рас­ши­рения. Но по­пу­ля­рна и Micro-ATX, осо­бен­но в ТВ-при­став­ках и в ав­то­ном­ных ком­пь­ю­те­рах. Во встраи­вае­мых сис­те­мах мо­жет ис­поль­зо­вать­ся Mini-ATX, но все, что мень­ше – удел спе­циа­ли­стов. Для на­ших це­лей по­на­до­бят­ся ATX или Micro-ATX.

1 Со­кет про­цес­со­ра (ох­ла­ж­дение)

Про­из­во­ди­те­лей про­цес­со­ров на плат­фор­ме x86, достой­ных на­ше­го внимания, все­го два – Intel и AMD, и у ка­ж­до­го из них боль­шое раз­но­об­ра­зие ва­ри­ан­тов про­цес­сор­ных со­ке­тов и разъ­е­мов для под­клю­чения ку­ле­ров. Ка­кой со­кет вам по­на­до­бит­ся, за­ви­сит от про­цес­со­ра, и к нему по­на­до­бит­ся со­от­вет­ст­вую­щая ма­те­рин­ская пла­та. По­следний со­кет от Intel на­зы­ва­ет­ся LGA1155 – он под­дер­жи­ва­ет и про­шлого­дние про­цес­со­ры Sandy Bridge, и свежевы­шед­ший Ivy Bridge. По­следний со­кет от AMD – AM3+, ко­то­рым мы поль­зо­ва­лись, рас­смат­ри­вая про­цес­сор AMD Phenom II. К обо­им со­ке­там нуж­ны со­вмес­ти­мые ку­ле­ры, хо­тя со­вре­мен­ные кон­ст­рук­ции ку­ле­ров «адап­ти­руются» от­верт­кой.

2 Разъ­е­мы пи­тания

Со­вре­мен­ным ком­пь­ю­те­рам нуж­ны и со­вре­мен­ные ис­точники пи­тания. На­ря­ду с обыч­ным 24-кон­такт­ным разъ­е­мом, иногда раз­би­ва­емым на бло­ки из 20 и 4 кон­так­тов, вам по­на­до­бит­ся 8-кон­такт­ный/12-воль­то­вый разъ­ем для про­цес­со­ра. Кон­ст­рук­ция разъ­е­мов обыч­но та­ко­ва, что в непра­виль­ное гнез­до их не вста­вить. Де­ше­вым ви­део­кар­там ред­ко нуж­но до­полнитель­ное пи­тание, но кар­там среднего диа­па­зо­на мо­жет еще по­тре­бо­вать­ся пи­таю­щий ка­бель для PCI Express с 6-кон­такт­ным разъ­е­мом, а для мощ­ной кар­ты – да­же два кабеля. Они долж­ны ид­ти от од­но­го бло­ка пи­тания, а для мощ­но­го ком­пь­ю­те­ра мы по­со­ве­ту­ем блок пи­тания мощ­но­стью 600 Вт с от­дель­ны­ми 12-воль­то­вы­ми «рель­са­ми» для ви­део­кар­ты.

3 Сло­ты па­мя­ти

Па­мять тес­но свя­за­на с про­цес­со­ром и спе­ци­аль­но вы­би­рается под ва­шу плат­фор­му. На со­вре­мен­ных ма­те­рин­ских пла­тах де­лать это го­раз­до про­ще – и Intel, и AMD ис­поль­зу­ют одни и те же план­ки DDR3 (поз­же в этом го­ду долж­на вый­ти DDR4), толь­ко ку­пите па­мять по­бы­ст­рее, чем вам нуж­на. Ес­ли па­мять ока­жет­ся слиш­ком мед­лен­ной для про­цес­со­ра, она ли­бо не бу­дет ра­бо­тать, ли­бо не даст рас­крыть его воз­мож­но­сти; ес­ли слиш­ком бы­ст­рой, то вы про­сто пе­ре­пла­ти­те лишнего. Мы взя­ли 4 ГБ па­мя­ти G. Skill Ripjaw Gaming Series (F3-12800CL7D) с так­то­вой час­то­той 1600 МГц. Боль­шин­ст­во со­вре­мен­ных ма­те­рин­ских плат под­дер­жи­ва­ют до 32 ГБ.

4 Пор­ты SATA (2 и 3)

Ста­рые разъ­е­мы IDE для же­ст­ких дис­ков и оп­ти­че­­ских при­во­дов сей­час встре­ча­ют­ся нечас­то. На со­вре­мен­ных ма­те­рин­ских пла­тах все под­клю­че­но че­рез го­раз­до бо­лее про­стые разъ­е­мы SATA. Не­смот­ря на то, что ка­бе­ли у них оди­на­ко­вы, мно­гие уст­рой­ст­ва со­вмес­ти­мы с SATA2, тео­ре­ти­че­­ская ско­рость ко­то­ро­го дости­га­ет 3 Гб/с, хо­тя на всех пла­тах, ко­то­рые нам по­па­лись, был и ин­тер­фейс SATA 3, ко­то­рый уд­во­ит эту ско­рость, при на­ли­чии со­вмес­ти­мо­го уст­рой­ст­ва хранения.

5 Пор­ты USB

Ана­ло­гич­но, сей­час, когда все при­вык­ли под­клю­чать все уст­рой­ст­ва че­рез USB 2, этот стан­дарт мед­лен­но вы­тес­ня­ет­ся USB 3. USB 3 по­вы­ша­ет пре­дел ско­ро­сти с 480 Мб/с ста­ро­го стан­дар­та до 5 Гб/с, что по­зво­ля­ет ему ид­ти в но­гу с SATA 3 и зна­чи­тель­но опе­ре­дить Firewire 800. Од­на­ко пе­ре­да­ча дан­ных – не столь од­но­знач­ная те­ма. Ско­рость тут за­ви­сит от опе­ра­ци­он­ной сис­те­мы, под­клю­чае­мых уст­ройств, драй­ве­ров для чип­се­та и пе­ре­да­вае­мых дан­ных. На­при­мер, мно­гие ви­део­ре­дак­то­ры убе­ж­де­ны, что Firewire 800 да­ет луч­шую про­из­во­ди­тель­ность, чем USB 3.

6 Сло­ты PCI

Ско­рее все­го вы за­хо­ти­те под­клю­чить пла­ты рас­ши­рения в сло­ты PCI Express x1 или PCI Express x16. К этим по­следним обыч­но от­но­сит­ся один слот для ви­део­кар­ты с уве­ли­чен­ным пи­танием, с мет­кой ‘PCIEX16’, ко­то­рый рас­по­ло­жен бли­же все­го к про­цес­со­ру, а бо­лее мед­лен­ные сло­ты от­ме­че­ны как ‘PCIE4’.

7 Ви­део­вы­ход

Те­перь, когда на мно­гих плат­фор­мах Intel и AMD есть про­цес­сор для об­ра­бот­ки гра­фи­ки, на пла­те ча­ще все­го име­ет­ся разъ­ем ви­део­вы­хо­да. Обыч­но это DVI- или HDMI-разъ­ем, ко­то­рый лег­ко под­клю­чить к те­ле­ви­зо­ру или со­вре­мен­ным эк­ра­нам; на HDMI так­же есть циф­ро­вой ау­дио­вы­ход.

8 Ау­дио­вы­ход

Вме­сте с циф­ро­вы­ми вы­хо­дами вы най­де­те и ана­ло­го­вые, обыч­но в ви­де оп­ти­че­­ских или ко­ак­си­аль­ных разъ­е­мов для уси­ли­те­ля. На мно­гих ма­те­рин­ских пла­тах для реа­ли­за­ции зву­ка ис­поль­зу­ет­ся чип­сет Realtek, спо­соб­ный фор­ми­ро­вать мно­го­ка­наль­ный звук. Луч­ше все­го со­хранить весь звук циф­ро­вым, так как в этом слу­чае при про­иг­ры­вании филь­мов с со­вмес­ти­мым уси­ли­те­лем не по­тре­бу­ет­ся ника­ко­го пре­об­ра­зо­вания; вдо­ба­вок это по­зво­лит из­бе­жать по­мех.

9 Локаль­ная сеть

Вы на­вер­ня­ка зна­ко­мы с про­вод­ны­ми/Ethernet се­те­вы­ми под­клю­чения­ми. Пре­дел ско­ро­сти пе­ре­да­чи дан­ных уже неко­то­рое вре­мя не ме­нял­ся – это зна­чит, что ско­рость се­ти существенно за­ви­сит от скорости под­клю­чен­ных уст­ройств. Все со­вре­мен­ные пла­ты теперь под­дер­жи­ва­ют под­­клю­чения со ско­ро­стью 10/100 Мб/с и 1000 Мб/с (ги­га­бит).

Про­цес­со­ры

Вы­чис­ли­тель­ная мощ­ность – это не толь­ко час­то­та про­цес­со­ра.

Когда-то про­из­во­ди­тель­ность про­цес­со­ра сво­ди­лась толь­ко к его так­то­вой час­то­те. Бо­лее бы­ст­рый про­цес­сор мог вы­пол­нять боль­ше опе­ра­ций за за­дан­ный пе­ри­од вре­мени и, сле­до­ва­тель­но, ре­шать ка­кую-то за­да­чу бы­ст­рее мед­лен­но­го про­цес­со­ра. Так­то­вая час­то­та из­ме­ря­ет­ся в гер­цах (Гц) и пред­став­ля­ет со­бой чис­ло опе­ра­ций, вы­пол­няе­мых в се­кун­ду (прав­да, здесь мы немно­го уп­ро­сти­ли – неко­то­рым опе­ра­ци­ям нуж­но бо­лее од­но­го цик­ла про­цес­со­ра). Боль­шин­ст­во со­вре­мен­ных про­цес­со­ров ра­бо­та­ют с так­то­вой час­то­той в несколь­ко ги­га­герц (1 ГГц = 1 000 000 000 Гц). Со­став команд за­ви­сит от ти­па про­цес­со­ра. Мы рас­смот­рим се­мей­ст­во x86, применяемое в боль­шин­ст­ве на­столь­ных ком­пь­ю­те­ров и но­ут­бу­ков. Этот со­став команд поя­вил­ся в 1978 г. на 16-бит­ном про­цес­со­ре Intel 8086. С тех пор к основ­ным ин­ст­рук­циям прибави­лись но­вые, с целью реа­ли­зации но­вых воз­мож­но­стей. У се­мей­ст­ва про­цес­со­ров ARM (при­ме­ня­ют­ся в боль­шин­ст­ве мо­биль­ных уст­ройств) дру­гой со­став команд, по­это­му их про­из­во­ди­тель­ность при той же так­то­вой час­то­те бу­дет от­ли­чать­ся.

Кро­ме ко­ли­че­­ст­ва опе­ра­ций, у про­цес­со­ров раз­ли­ча­ет­ся и струк­ту­ра дан­ных. Боль­шин­ст­во со­вре­мен­ных про­цес­со­ров 32-бит­ные или 64-бит­ные – имеются в виду биты дан­ных, об­ра­ба­ты­вае­мые ка­ж­дой ко­ман­дой. Зна­чит, 64-бит­ные вдвое бы­ст­рее 32-бит­ных? Нет. Все за­ви­сит от то­го, сколь­ко нуж­но вам: ско­ро­сти опе­ра­ции над 20-бит­ным чис­лом на 64- и 32-бит­ном про­цес­со­ре бу­дут оди­на­ко­вы. Дли­на сло­ва так­же мо­жет вли­ять на спо­соб об­ра­щения про­цес­со­ра к ОЗУ. О том, как это влия­ет на про­из­во­ди­тель­ность, мож­но про­честь во врез­ке «64-бит­ные про­цес­со­ры про­тив 32-бит­ных». Один из важ­нейших ас­пек­тов про­из­во­ди­тель­но­сти про­цес­со­ра – число ядер. По су­ти, ка­ж­дое яд­ро – это от­дель­ный про­цес­сор, на ко­то­ром мож­но за­пускать про­грам­му с минималь­ным взаи­мо­дей­ст­ви­ем с дру­ги­ми яд­ра­ми.

Как и с дли­ной сло­ва, ко­ли­че­­ст­во ядер нель­зя про­сто ум­но­жить на так­то­вую час­то­ту, что­бы по­лу­чить мощ­ность про­цес­со­ра. За­да­ча мо­жет эф­фек­тив­но ис­поль­зо­вать несколь­ко ядер, толь­ко ес­ли она раз­де­ле­на на несколь­ко по­то­ков. Это оз­на­ча­ет, что раз­ра­бот­чик раз­бил ее на от­дель­ные под­про­грам­мы, ка­ж­дая из ко­то­рых мо­жет вы­пол­нять­ся на от­дель­ном яд­ре. Не все за­да­чи под­да­ют­ся та­ко­му раз­биению. Про­грам­ма с одним по­то­ком бу­дет ра­бо­тать на мно­го­ядер­ном про­цес­со­ре с той же ско­ро­стью, что и на од­но­ядер­ном – од­на­ко две од­но­по­то­ко­вые про­грам­мы на мно­го­ядер­ном про­цес­со­ре бу­дут ра­бо­тать бы­ст­рее, чем на од­но­ядер­ном. Нам пред­став­ля­ет­ся, что у ком­пь­ю­те­ра есть некая па­мять, ко­то­рую он де­лит ме­ж­ду за­пу­щен­ны­ми про­грам­ма­ми; но на прак­ти­ке все чуть сложнее. Па­мять – это не еди­ная сущ­ность, а ие­рар­хия раз­лич­ных уровней. Обыч­но чем бы­ст­рее па­мять, тем она до­ро­же, по­это­му в боль­шин­ст­ве ком­пь­ю­те­ров есть малый объ­ем очень бы­ст­рой па­мя­ти, на­зы­ва­мой кэ­шем, опе­ра­тив­ная па­мять го­раз­до боль­ше­го объ­е­ма и раз­дел под­кач­ки на же­ст­ком дис­ке, слу­жащий для про­грамм и функ­ций чем-то вро­де пе­ре­полнения па­мя­ти. Для про­цес­со­ров наи­бо­лее ва­жен кэш, по­то­му что он вве­ден в схе­му: мож­но до­ба­вить до­полнитель­ную опе­ра­тив­ную па­мять и из­менить раз­мер раз­де­ла под­кач­ки, но объ­ем кэ­ша фик­си­ро­ван. Сам кэш раз­бит на уровни, и бо­лее низ­кие уровни мень­ше по объ­е­му и бы­ст­рее, чем бо­лее вы­со­кие.

Шаг за шагом:
(thumbnail)
Ви­део­кар­та (Vdrift), Кад­ров в се­кун­ду
(thumbnail)
Ско­рость ОЗУ, МБ/с
(thumbnail)
Ста­ти­че­ский Apache. За­про­сов в се­кун­ду
(thumbnail)
Ите­ра­ций в се­кун­ду. Graphics Magic Sharpen Graphics Magic Blur
(thumbnail)
John The Ripper. Про­ве­рок в се­кун­ду (в млн)
(thumbnail)
МБ/с. Чте­ние с дис­ка 2 ГБ с IoZone,Чте­ние с дис­ка 4 ГБ с IoZone

В све­те все­го это­го нелег­ко по­нять, на­сколь­ко про­из­во­ди­тель­ны­ми раз­лич­ные кон­фи­гу­ра­ции мо­гут быть в раз­ных си­туа­ци­ях. Вме­сто то­го, что­бы по­про­бо­вать по­нять, как ком­пь­ю­те­ры бу­дут ра­бо­тать с раз­ны­ми кон­фи­гу­ра­ция­ми про­цес­со­ра, мы за­пустим се­рию тес­тов и уви­дим, как они ра­бо­та­ют. Про­цес­со­ры, ко­то­рые мы бу­дем тес­ти­ро­вать, та­ко­вы:

» AMD Phenom II X4 3400 МГц Quad Core (Кэш: 4 × 64 КБ уро­вень 1, 4 × 512 КБ уро­вень 2 и 6 МБ уро­вень 3), це­на £79,00

» AMD Phenom II X6 6 Core 3300 МГц (Кэш: 6 × 512 КБ уро­вень 2, 6 МБ уро­вень 3), це­на £100,27

» Intel i5-2500K 3,6 ГГц (Кэш: 2 × 32 КБ уро­вень 1, 256 КБ уро­вень 2, 6 МБ уро­вень 3), це­на £162,43

Все про­цес­со­ры мы за­пуска­ли на ре­ко­мен­дуе­мых так­то­вых час­то­тах. Раз­гон про­цес­со­ров – са­мо по се­бе ис­кусст­во, и из ка­ж­до­го из них мож­но вы­жать до­полнитель­ную про­из­во­ди­тель­ность, но дан­ная те­ма на­хо­дит­ся за рам­ка­ми на­шей ста­тьи.

В иде­аль­ном ми­ре мы бы про­тес­ти­ро­ва­ли все про­цес­со­ры с оди­на­ко­вы­ми ма­те­рин­ски­ми пла­та­ми, что­бы ис­клю­чить лю­бые раз­ли­чия. Од­на­ко у раз­ных про­цес­со­ров раз­ные схе­мы кон­так­тов, и они фи­зи­че­­ски не по­дой­дут ко всем пла­там (а ес­ли и по­дой­дут, то не бу­дут ра­бо­тать).

Мы об­на­ру­жи­ли, что про­цес­сор Intel обо­гнал про­цес­со­ры AMD по про­из­во­ди­тель­но­сти поч­ти во всех об­лас­тях. И неуди­ви­тель­но: он сто­ит вдвое до­ро­же са­мо­го де­ше­во­го из них. В неко­то­рых тес­тах – на­при­мер, тес­те ста­ти­че­­ской страницы Apache – его про­из­во­ди­тель­ность бы­ла вы­ше вдвое. По­жа­луй, бо­лее стран­но то, что он поч­ти вез­де пре­взо­шел Phenom II X6, несмот­ря на то, что у него на два яд­ра мень­ше и так­то­вая час­то­та лишь немно­гим вы­ше. Ис­клю­чения­ми ста­ли тест по взло­му па­ро­лей John the Ripper и неко­то­рые тес­ты GraphicsMagic. Это тес­ты с вы­со­кой сте­пе­нью рас­па­рал­ле­ли­вания, умею­щие восполь­зо­вать­ся всей до­полнитель­ной вы­чис­ли­тель­ной мощ­но­стью X6.

Не все раз­ли­чия в про­из­во­ди­тель­но­сти обя­за­ны толь­ко про­цес­со­рам. Как мы ска­за­ли, они тес­ти­ро­ва­лись на раз­лич­ных ма­те­рин­ских пла­тах. На пла­те Intel есть твер­до­тель­ный же­ст­кий диск (SSD) для кэ­ши­ро­вания дан­ных, от­прав­ляе­мых на глав­ный SSD. Это при­ве­ло к су­ще­ст­вен­но­му росту ско­ро­стей чтения фай­лов раз­ме­ром до 2 ГБ, но с фай­ла­ми боль­ше это­го раз­ме­ра су­ще­ст­вен­ных раз­ли­чий не наблюдалось.

Ско­рость за­пи­си на раз­лич­ных сис­те­мах бы­ла при­мер­но рав­ной. Вы­бор про­цес­со­ров се­го­дня, по­жа­луй, сло­жен как никогда. Поя­ви­лось боль­ше про­стых про­цес­со­ров, про­цес­со­ров с ма­лым энер­го­по­треб­лением, слож­ных про­цес­со­ров, па­рал­лель­ных гра­фи­че­­ских чи­пов и кла­сте­ров. Бо­лее ак­ту­аль­ным, чем когда-ли­бо рань­ше, ста­но­вит­ся не во­прос «Ка­кой про­цес­сор са­мый луч­ший?», а «Ка­кой про­цес­сор луч­ше все­го по­дой­дет для ре­шения дан­ной за­да­чи?». Для от­ве­та на него нуж­но знать, и ка­кие про­цес­со­ры пред­став­ле­ны на рын­ке, и их стои­мость, и то, как они вы­пол­ня­ют раз­лич­ные за­да­чи.

Яд­ра Intel вы­со­ко­го клас­са об­ла­да­ют наи­боль­шей про­из­во­ди­тель­но­стью для ре­шения по­все­днев­ных за­дач, но эта ско­рость сто­ит денег. А до­полнитель­ные яд­ра X6 идут вро­вень, а иногда да­же об­хо­дят i5 в тес­тах GraphicsMagic, ими­ти­рую­щих ра­бо­ту с изо­бра­жения­ми, что по­зво­лит вам сэ­ко­но­мить при­лич­ную сум­му. Но ес­ли вы не бу­де­те поль­зо­вать­ся все­ми вид­же­та­ми и эф­фек­та­ми KDE, X4 бо­лее чем доста­точ­но для ре­шения боль­шин­ст­ва по­все­днев­ных вы­чис­ли­тель­ных за­дач.

Персональные инструменты
купить
подписаться
Яндекс.Метрика