LXF83:Maxima
(→...и не только рационально.) |
(→Проще простого) |
||
Строка 71: | Строка 71: | ||
=== Проще простого === | === Проще простого === | ||
− | Итак, о преобразованиях выражений мы уже поговорили | + | Итак, о преобразованиях выражений мы уже поговорили достаточно – теперь перейдем к их упрощению. Об элементарных упрощениях мы уже говорили в предыдущий раз: они могут производиться автоматически, на что влияет установленный флаг simp; и по умолчанию именно так и происходит. |
− | + | ||
− | мы уже говорили в предыдущий раз: они могут производиться | + | Здесь тоже все начинается с рациональных выражений, которыми занимается функция ratsimp(выражение). Она упрощает выражение за счет рациональных преобразований, но, в отличие от остальных функций по обработке рациональных выражений, работает в том числе и «вглубь», то есть иррациональные части выражения не рассматриваются как атомарные, а упрощаются, в том числе, и все рациональные элементы внутри них: |
− | + | ||
− | именно так и происходит. | + | На ratsimp() действуют те же флаги, что и на rat(): и ratexpand, и keepfloat, и ratfac. Но отличается она от rat() или ratexpand() не только умением работать «в глубину», но и некоторыми дополнительными рациональными преобразованиями, которые не поддерживаются этими двумя функциями: |
− | Здесь тоже все начинается с рациональных выражений, которыми | + | |
− | занимается функция ratsimp(выражение). Она упрощает выражение | + | Кроме функции ratsimp(), есть еще и дополнительный переключатель – ratsimpexpons. По умолчанию он установлен в false; если же назначить ему значение true – это приведет к автоматическому упрощению показателей степени: |
− | за счет рациональных преобразований, но, в отличие от остальных | + | |
− | функций по обработке рациональных выражений, работает в том числе | + | Функция ratsimp() – это уже достаточно мощный, и в то же время весьма быстрый, механизм упрощения; но, конечно, не достаточный: ведь те действия, которые можно упростить в разнообразных математических выражениях, не ограничиваются рациональными. Поэтому все же основной плюс этой функции – это скорость. А для более серьезных упрощений существует расширенный вариант – fullratsimp(выражение). Эта функция последовательно применяет к переданному выражению функцию ratsimp(), а также некоторые нерациональные преобразования – и повторяет эти действия в цикле до тех пор, пока выражение не перестанет в процессе них изменяться. За счет этого функция работает несколько медленнее, чем ratsimp(), зато дает более надежный результат – к некоторым выражениям, которые она может упростить с ходу, ratsimp() пришлось бы применять несколько раз, а иногда та и вообще не справилась бы с задачей. |
− | и «вглубь», то есть иррациональные части выражения не | + | |
− | + | И третья основная функция упрощения выражений – уже никак с предыдущими двумя не соотносящаяся – radcan(выражение). Если ratsimp() и fullratsimp() ориентированы на упрощение рациональных действий, то radcan() занимается упрощением логарифмических, экспоненциальных функций и степенных с нецелыми рациональными показателями, то есть корней (радикалов). Например, выражение из второго примера в этом разделе radcan() сможет упростить сильнее, чем ratsimp()/fullratsimp(): | |
− | элементы внутри них: | + | |
− | На ratsimp() действуют те же флаги, что и на rat(): и ratexpand, и | + | В некоторых случаях наилучшего результата можно добиться, комбинируя radcan() с ratsimp() или fullratsimp(). |
− | keepfloat, и ratfac. Но отличается она от rat() или ratexpand() не | + | |
− | + | С функцией radcan() смежны по действию еще два управляющих ключа. Один из них называется %e_to_numlog. Влияет он не на саму функцию, а на автоматическое упрощение. Если выставить его в true, то выражения вида e(r*log(выражение)), где r – рациональное число, будут автоматически раскрываться в выражениеr. Функция radcan() делает такие преобразования независимо от значения ключа. Второй ключ – radexpand (от radical, не путать с ratexpand) – влияет на упрощение квадратного корня из четной степени какого-либо выражения. Он, в отличие от большинства переключателей, имеет не два, а три значения: при значении all, sqrt(x2) будет раскрываться в x – как для действительных, так и для комплексных чисел; при значении true (по умолчанию), sqrt(x2) для действительных чисел превращается в |x|, а для комплексных не преобразуется; а при значении false, sqrt(x2) не будет упрощаться вообще. | |
− | рациональными преобразованиями, которые не поддерживаются этими | + | |
− | двумя функциями: | + | Следующие две функции и один флаг относятся к упрощению факториалов. Функция factcomb(выражение) проводит упрощения вида n!*(n+1) = (n+1)! и тому подобные. Функция minfactorial, напротив, сокращает факториалы, то есть действует по принципу n!/(n–1)! = n. И флаг sumsplitfact, который изначально установлен в true, находясь в состоянии false, приводит к тому, что после того, как отработает factcomb, minfactorial вызывается автоматически. |
− | Кроме функции ratsimp(), есть еще и дополнительный | + | |
− | + | ||
− | назначить ему значение true – это приведет к автоматическому | + | |
− | + | ||
− | Функция ratsimp() – это уже достаточно мощный, и в то же | + | |
− | время весьма быстрый, механизм упрощения; но, конечно, не | + | |
− | + | ||
− | + | ||
− | + | ||
− | для более серьезных упрощений существует расширенный вариант – | + | |
− | fullratsimp(выражение). Эта функция последовательно применяет | + | |
− | к переданному выражению функцию ratsimp(), а также некоторые | + | |
− | + | ||
− | тех пор, пока выражение не перестанет в процессе них изменяться. За | + | |
− | счет этого функция работает несколько медленнее, чем ratsimp(), зато | + | |
− | дает более надежный результат – к некоторым выражениям, которые | + | |
− | она может упростить с ходу, ratsimp() пришлось бы применять | + | |
− | + | ||
− | И третья основная функция упрощения выражений – уже никак с | + | |
− | предыдущими двумя не соотносящаяся – radcan(выражение). Если | + | |
− | ratsimp() и fullratsimp() ориентированы на упрощение | + | |
− | + | ||
− | экспоненциальных функций и степенных с нецелыми рациональными | + | |
− | показателями, то есть корней (радикалов). Например, выражение из | + | |
− | второго примера в этом разделе radcan() сможет упростить сильнее, | + | |
− | чем ratsimp()/fullratsimp(): | + | |
− | В некоторых случаях наилучшего результата можно добиться, | + | |
− | + | ||
− | С функцией radcan() смежны по действию еще два | + | |
− | + | ||
− | саму функцию, а на автоматическое упрощение. Если выставить его в | + | |
− | true, то выражения вида e(r*log(выражение)), где r – рациональное число, | + | |
− | будут автоматически раскрываться в выражениеr. Функция radcan() | + | |
− | делает такие преобразования независимо от значения ключа. Второй | + | |
− | ключ – radexpand (от radical, не путать с ratexpand) – влияет на | + | |
− | упрощение квадратного корня из четной степени какого-либо | + | |
− | + | ||
− | значения: при значении all, sqrt(x2) будет раскрываться в x – как для | + | |
− | действительных, так и для комплексных чисел; при значении true (по | + | |
− | умолчанию), sqrt(x2) для действительных чисел превращается в |x|, а | + | |
− | для комплексных не преобразуется; а при значении false, sqrt(x2) не | + | |
− | будет упрощаться вообще. | + | |
− | Следующие две функции и один флаг относятся к упрощению | + | |
− | + | ||
− | n!*(n+1) = (n+1)! и тому подобные. Функция minfactorial, напротив, | + | |
− | сокращает факториалы, то есть действует по принципу n!/(n–1)! = n. | + | |
− | И флаг sumsplitfact, который изначально установлен в true, | + | |
− | + | ||
− | factcomb, minfactorial вызывается автоматически. | + | |
=== Вот под таким углом... === | === Вот под таким углом... === |
Версия 17:35, 10 марта 2008
|
|
|
Содержание |
Maxima: укротитель выражений
ЧАСТЬ 3 Сегодня Тихон Тарнавский расскажет вам о возможностях Maxima по укрощению упрощению выражений, содержащих рациональные, иррациональные и тригонометрические функции.
В этот раз я расскажу о штатных возможностях Maxima по упрощению и прочим преобразованиям выражений. В частности, речь пойдет об автоматическом раскрытии скобок и вынесении за скобки; об упрощении как арифметических действий над некоторыми элементами, так и выражений с участием степенных, показательных и логарифмических функций; а также об обработке тригонометрических выражений. Все эти функции призваны облегчать читаемость математических формул и повышать простоту их восприятия, а посему стоит уделить этому уроку достаточно внимания: при верном использовании данные манипуляции позволят сэкономить в процессе работы значительное количество времени.
Выражаясь рационально...
Существенная часть интересующих нас сегодня функций предназначена для преобразования рациональных выражений. Напомню, рациональным называется выражение, состоящее только из арифметических операторов и возведения в натуральную степень; естественно, элементы такого выражения могут содержать и неарифметические и нестепенные функции – тогда такие элементы с точки зрения рационального выражения считаются атомарными, т.е. неделимыми и непреобразуемыми.
Функции, работающие с рациональными выражениями, описаны в разделе документации «Polynomials»; потому как рациональные функции с математической точки зрения рассматриваются как расширение многочленов (полиномов) – примерно так же, как рациональные числа считаются расширением целых (многочлены, кстати, тоже иногда называют целыми функциями; хотя общий математический смысл этого термина несколько шире).
Имена всех функций Maxima по обработке рациональных выражений содержат буквосочетание rat, но не от слова «крыса», а от слова «rational». И начнем мы знакомство с ними с функции, которая так и называется: rat(выражение). Эта функция преобразовывает рациональное выражение к так называемой канонической форме (Canonical Rational Expression, CRE). То есть раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; кроме того, приводит все числа в конечной десятичной записи к рациональным.
Тут надо заметить, что атомарные элементы, т.е. символы и числа, в канонической форме рационального выражения в Maxima имеют другое внутреннее представление. При работе в интерфейсах Maxima и xMaxima об этом напоминает приписка /R/ после имени ячейки вывода (в wxMaxima и TeXmacs такая приписка отсутствует). При этом внешне, на видимом пользователю уровне, каноническая форма ничем, кроме этого обозначения, от общей не отличается. Но один достаточно интересный момент здесь есть: если каноническая форма рационального выражения используется в других рациональных выражениях, то последние также автоматически приводятся к канонической форме:
Это может быть достаточно удобно, если вам нужно пошагово проделать большое количество рациональных преобразований: вы можете, один раз вызвав rat(), ссылаться на предыдущие ячейки и благодаря этому далее автоматически видеть на каждом шаге итоговое выражение в канонической, а значит, достаточно компактной и удобной к восприятию, форме. Если на каком-то этапе такое поведение станет вам мешать, вы можете вернуть выражение из канонической к общей форме с помощью функции ratdisrep(выражение). Кроме того, каноническая форма автоматически «отменяется» и в случае любых преобразований, не являющихся рациональными:
Здесь, хотя %o2 было выражением в канонической форме, %o3 – уже выражение общего вида, так как оно не является рациональным.
Скажем пару слов о приведении конечной десятичной записи чисел к рациональной. Конечная десятичная запись считается по определению приблизительной, что и понятно, т.к. при вычислениях самой Maxima такая запись может возникнуть исключительно при применении приближенных методов либо при ручном указании о переводе числа в десятичную запись из математической, в результате чего результат тоже, вероятнее всего, окажется приблизительным. Эта приблизительность учитывается и при переводе в рациональные числа, а ее уровень, то есть мера, на которую рациональное число при переводе может отклониться от конечной десятичной записи, регулируется переменной ratepsilon, равной по умолчанию 2.0e-8, т.е. 0.00000002. Если такое положение вещей вас не устраивает, вы можете убедить Maxima оставлять десятичную запись чисел как есть, установив в true значение флага keepfloat (по умолчанию он равен false).
Следующая функция раскрывает скобки в рациональном выражении и называется ratexpand() (одно из значений слова expand и есть «раскрыть скобки»). Здесь также действует опция keepfloat. Кроме нее, есть еще одна опция – ratdenomdivide; по умолчанию она установлена в true, что приводит к тому, что каждая дробь, в которой числитель является суммой, распадается на сумму дробей с одинаковым знаменателем. Если же сбросить эту опцию в false, тогда все дроби с одинаковым знаменателем будут, напротив, объединены в одну дробь с числителем в виде суммы числителей изначальных дробей. То есть внешне результат будет в этом случае выглядеть почти так же, как и у функции rat(); к тому же единственная видимая пользователю разница проявляется только в рациональных выражениях от нескольких переменных (или различных иррациональных выражений). Заключается эта разница в том, что после ratexpand() и в числителе, и в знаменателе дроби все скобки будут раскрыты, в случае же rat() слагаемые, где присутствуют, скажем, две переменных, будут сгруппированы, и одна из них будет вынесена за скобки (в документации такая форма записи называется «рекурсивной» (recursive):
Кроме того, разница, конечно, заключается и во внутреннем представлении: с точки зрения программы, после ratexpand() выражение будет по-прежнему общего вида. Соответственно и все результаты дальнейших рациональных действий с выражением не будут автоматически «канонизироваться». Я специально обращаю ваше внимание на схожесть между результатами этих двух различных функций, поскольку в документации эта схожесть никак не обозначена: в описании обеих функций и примерах к ним нет вообще никаких ссылок друг на друга.
Помимо флага ratdenomdivide, есть также функция, собирающая воедино дроби с одинаковыми знаменателями; зовут ее combine():
В дополнение к функции ratexpand() есть также флаг ratexpand, который по умолчанию равен false, а будучи установлен в true, приводит к тому, что все рациональные выражения в канонической форме отображаются и преобразовываются к общему виду сразу же с раскрытыми скобками:
Обратите внимание, что при применении этого флага выражение сохраняет каноническую форму.
Действует в этом случае и флаг ratdenomdivide (напомню, что в строке %i1 этот флаг был установлен локально, используя сокращенную запись функции ev()):
Иными словами, флаг ratexpand по своему действию аналогичен одноименной функции, но действует он на все без исключения канонические рациональные выражения и при этом оставляет их в канонической внутренней записи и изменяет только внешнее отображение этой записи, сохраняя при этом и дальнейшую автоматическую «канонизацию».
...и не только рационально.
Помимо ratexpand() есть также и функция «просто» expand(). Различий между ними несколько, наиболее принципиальные таковы. Во-первых, ratexpand() раскрывает только рациональное выражение «верхнего уровня», все же подвыражения, не являющиеся рациональными, обрабатываются как атомарные, то есть внутрь них она не залезает; expand() же раскрывает скобки на всех уровнях вложенности:
Во-вторых, ratexpand() приводит дроби-слагаемые к общему знаменателю, а expand() этого не делает; в-третьих, на функцию expand не действует переключатель ratdenomdivide:
И в-четвертых, expand() не преобразовывает к рациональным числам конечную десятичную запись – опять-таки, вне зависимости от флага keepfloat.
Функция expand(), в отличие от своего рационального сородича, имеет несколько вариаций – в виде отдельных функций с похожими названиями, которые раскрывают скобки несколько по-разному. Первую мы уже рассмотрели. Вторая называется expandwrt(выражение, x, y, ..., v), где wrt расшифровывается как «with respect to...», то есть «относительно...». Она раскрывает скобки не везде, а только относительно тех символов, которые заданы в списке аргументов после выражения. Другими словами, только там, где из скобок можно вынести хотя бы один из перечисленных символов:
(На предупреждение, возникающее при первом вызове функций expandwrt*(), можете не обращать внимания – на функционале, о котором идет речь, оно никоим образом не отражается.)
Если в выражении встречаются дроби, то по умолчанию эта функция раскрывает скобки только в их числителях, оставляя знаменатели в покое. Изменить это поведение можно переключателем expandwrt_denom, установив его в true (по умолчанию он равен false):
И, наконец, последняя функция из этого семейства – expandwrt_factored(выражение, x, y, ..., v) – раскрывает скобки лишь в тех слагаемых, где упомянутые символы встречаются не в одном, а в каждом из сомножителей:
Раскрытием возведения в целую степень можно управлять как в контексте функции expand(), так и отдельно. В первом случае применяются переменные maxposex и maxnegex, определяющие соответственно максимальные положительный и отрицательный показатель степени, которые будут раскрываться этой функцией. По умолчанию оба параметра равны 1000. Переназначить их можно не только глобально, но и в контексте одного конкретного вызова функции expand() – в таком случае это делается с помощью дополнительных аргументов, задаваемых после выражения:
В противовес maxposex и maxnegex можно задать максимальные положительную и отрицательную степени, которые будут раскрываться автоматически, без вызова функций группы expand. За это отвечают переменные expop и expon, и по умолчанию они равны нулю, то есть автоматически степени не раскрываются вообще.
Кроме самостоятельной функции expand(), существуют также флаги expand и expand(p, n) у функции ev(). Запись выражение, expand равносильна expand(ev(выражение)), а выражение, expand(p, n) – expand(ev(выражение, p, n)).
Возможности управлять раскрытием скобок на этом не заканчиваются. Еще одна функция – distrib() – представляет как бы облегченный вариант expand(). Она действует аналогично expand(), но только на один уровень в глубину:
В противоположность функциям *expand*(), раскрывающим скобки, можно также и разложить выражение на множители, то есть максимально повыносить все за скобки. Делается это с помощью функции factor():
Если функции factor() передать целое число, она разложит его на простые множители; если же передать рациональное число – на множители будут разложены его числитель и знаменатель:
Если многочлен не может быть представлен в виде произведения нескольких сомножителей, его можно попытаться преобразовать в сумму таких произведений с помощью функции factorsum():
Функция factorsum() умеет раскладывать на множители только независимые слагаемые, то есть такие, которые не содержат одинаковых переменных. Если мы раскроем скобки в выражении, содержащем в двух разных местах один и тот же символ, то так как коэффициенты при этом символе после раскрытия сгруппируются, factorsum() не сможет понять, каким именно образом разгруппировать их обратно:
Нужно заметить, что функции factor() и factorsum(), хотя и не имеют в имени приставки rat, все же ведут себя в смысле разбора передаваемых им выражений не как expand() и сопутствующие, а как ratexpend(); то есть на любой не-рациональной функции останавливаются и внутрь не идут:
Впрочем, об этом можно догадаться из документации, так как функции factor* описаны не в разделе Simplification, куда относятся expand*, а, так же, как и rat*, в разделе Polynomials.
Выносить за скобки, а также раскрывать эти скобки можно не только специальной функцией, но и дополнительным флагом ко все той же канонической форме рациональных выражений. Флаг этот зовут ratfac, и по умолчанию он равен false, то есть вынесение за скобки не происходит. Если же его установить в true, то в каждом рациональном выражении, приведенном к канонической форме, все будет максимально вынесено за скобки, но без вызова функции factor(); например, в примере ниже не произошло обратного свертывания (x+1)2, хотя, будучи применен к первоначальному выражению, флаг ratfac сохранил и этот множитель нераскрытым (также можете сравнить этот пример с аналогичным примером к функциям ratexpand() и rat()):
Проще простого
Итак, о преобразованиях выражений мы уже поговорили достаточно – теперь перейдем к их упрощению. Об элементарных упрощениях мы уже говорили в предыдущий раз: они могут производиться автоматически, на что влияет установленный флаг simp; и по умолчанию именно так и происходит.
Здесь тоже все начинается с рациональных выражений, которыми занимается функция ratsimp(выражение). Она упрощает выражение за счет рациональных преобразований, но, в отличие от остальных функций по обработке рациональных выражений, работает в том числе и «вглубь», то есть иррациональные части выражения не рассматриваются как атомарные, а упрощаются, в том числе, и все рациональные элементы внутри них:
На ratsimp() действуют те же флаги, что и на rat(): и ratexpand, и keepfloat, и ratfac. Но отличается она от rat() или ratexpand() не только умением работать «в глубину», но и некоторыми дополнительными рациональными преобразованиями, которые не поддерживаются этими двумя функциями:
Кроме функции ratsimp(), есть еще и дополнительный переключатель – ratsimpexpons. По умолчанию он установлен в false; если же назначить ему значение true – это приведет к автоматическому упрощению показателей степени:
Функция ratsimp() – это уже достаточно мощный, и в то же время весьма быстрый, механизм упрощения; но, конечно, не достаточный: ведь те действия, которые можно упростить в разнообразных математических выражениях, не ограничиваются рациональными. Поэтому все же основной плюс этой функции – это скорость. А для более серьезных упрощений существует расширенный вариант – fullratsimp(выражение). Эта функция последовательно применяет к переданному выражению функцию ratsimp(), а также некоторые нерациональные преобразования – и повторяет эти действия в цикле до тех пор, пока выражение не перестанет в процессе них изменяться. За счет этого функция работает несколько медленнее, чем ratsimp(), зато дает более надежный результат – к некоторым выражениям, которые она может упростить с ходу, ratsimp() пришлось бы применять несколько раз, а иногда та и вообще не справилась бы с задачей.
И третья основная функция упрощения выражений – уже никак с предыдущими двумя не соотносящаяся – radcan(выражение). Если ratsimp() и fullratsimp() ориентированы на упрощение рациональных действий, то radcan() занимается упрощением логарифмических, экспоненциальных функций и степенных с нецелыми рациональными показателями, то есть корней (радикалов). Например, выражение из второго примера в этом разделе radcan() сможет упростить сильнее, чем ratsimp()/fullratsimp():
В некоторых случаях наилучшего результата можно добиться, комбинируя radcan() с ratsimp() или fullratsimp().
С функцией radcan() смежны по действию еще два управляющих ключа. Один из них называется %e_to_numlog. Влияет он не на саму функцию, а на автоматическое упрощение. Если выставить его в true, то выражения вида e(r*log(выражение)), где r – рациональное число, будут автоматически раскрываться в выражениеr. Функция radcan() делает такие преобразования независимо от значения ключа. Второй ключ – radexpand (от radical, не путать с ratexpand) – влияет на упрощение квадратного корня из четной степени какого-либо выражения. Он, в отличие от большинства переключателей, имеет не два, а три значения: при значении all, sqrt(x2) будет раскрываться в x – как для действительных, так и для комплексных чисел; при значении true (по умолчанию), sqrt(x2) для действительных чисел превращается в |x|, а для комплексных не преобразуется; а при значении false, sqrt(x2) не будет упрощаться вообще.
Следующие две функции и один флаг относятся к упрощению факториалов. Функция factcomb(выражение) проводит упрощения вида n!*(n+1) = (n+1)! и тому подобные. Функция minfactorial, напротив, сокращает факториалы, то есть действует по принципу n!/(n–1)! = n. И флаг sumsplitfact, который изначально установлен в true, находясь в состоянии false, приводит к тому, что после того, как отработает factcomb, minfactorial вызывается автоматически.
Вот под таким углом...
И напоследок поговорим о функциях для преобразования триго- нометрических формул. Здесь так же, как и у рациональных функ- ций, присутствует общая для всех приставка – trig; расшифровы- вать ее, думаю, особой нужды нет. Начнем по традиции с функции trigexpand(выражение). Она, как нетрудно догадаться, раскрывает скобки в тригонометрических выражениях: Здесь, как обычно, есть несколько управляющих флагов, первый из которых опять же является тезкой самой функции. Он приводит к повторному раскрытию всех синусов-косинусов, то есть фактически равнозначен повторному вызову самой функции: Второй флаг – halfangles – управляет раскрытием формул поло- винных углов. Оба эти флага по умолчанию сброшены. А следующие два флага – trigexpandplus и trigexpandtimes – отвечают соответ- ственно за применение формул сумм углов и кратных углов. То есть в примере выше сначала сработал флаг trigexpandplus, а затем – trigexpandtimes. Эти флаги по умолчанию установлены, что и видно из примера. Кроме всего уже упомянутого, есть еще флаги trigsign и triginverses. Первый принимает традиционные два значения (по умолчанию – true) и регулирует вынос знака за пределы тригонометрической функции, то есть, к примеру, sin(–x) упростится до –sin(x), а cos(–x) – до cos(x). Флаг triginverses – трехзначный, и умолчательное его значение равно all. Он отвечает за обработку сочетаний вида sin(asin(x)) или atan(tan(x)). Значение all позволяет раскрывать эти сочетания в обоих направлениях (напомню, что при этом часть корней будет теряться); зна- чение true оставляет разрешенным раскрытие только вида sin(asin(x)), то есть блокирует вариант с потерями периодических значений; а случай false запрещает оба направления преобразований. Функция, обратная trigexpand(), называется trigreduce(выраже- ние) – здесь, в полном соответствии со значением слова reduce, дейс- твуют формулы понижения степени. Например, применив дважды эту функцию к результату предыдущего примера, мы получим его в исход- ном виде (см. рис. наверху страницы). Эту функцию можно вызвать с более полным списком аргументов: trigreduce(выражение, переменная) – тогда формулы понижения степени будут применяться только по отношению к заданной перемен- ной (переменная может быть, как и почти везде, не только отдельным символом, но и выражением). Третья функция занимается уже упрощением, и зовут ее, соответ- ственно, trigsimp(выражение). Она старается упростить любое три- гонометрическое выражение, используя известные формулы, такие как sin2(x)+cos2(x)=1 и тому подобные. Для наилучшего результата ее можно комбинировать с trigreduce(), ratsimp()/fullratsimp() и radcan(). Этим возможности Maxima по преобразованию и упрощению раз- нообразных выражений еще не совсем исчерпаны, но основные из них мы рассмотрели в полной мере. В следующий раз поговорим немного о применении некоторых встроенных функций, о работе с векторами, мат- рицами и множествами и, возможно, о работе с логикой, с уравнениями и неравенствами, а также их системами.