Журнал LinuxFormat - перейти на главную

LXF86:Maxima

Материал из Linuxformat
(Различия между версиями)
Перейти к: навигация, поиск
(викификация, оформление)
 
(викификация, оформление)
Строка 64: Строка 64:
 
Здесь, чтобы было интереснее и не приходилось писать в файлы всякую ерунду, немного прервемся и создадим пару небольших
 
Здесь, чтобы было интереснее и не приходилось писать в файлы всякую ерунду, немного прервемся и создадим пару небольших
 
функций.
 
функций.
 +
 +
[[Изображение:LXF86_maxima02.png]]
 +
 +
Эта функция возвращает список всех простых чисел, меньших чем
 +
заданное целое число. Сначала мы проверяем, является ли аргумент
 +
целым числом и делаем это простейшим образом: в случае невыполнения условия оператор '''if''', напомню, вернет '''''false'''''. Генерируется список тоже самым простым и коротким в реализации способом – рекурсией.
 +
(примечание для людей, далеких от программирования: рекурсивная
 +
функция – это функция, вызывающая саму себя; чаще всего такие
 +
функции строятся по принципу индукции). Здесь используется функция ''Maxima'' по имени '''prev_prime()''', которая возвращает простое число, предшествующее заданному целому.
 +
 +
У рекурсии, при всей ее простоте реализации, есть неоспоримый
 +
минус – только один, но весьма существенный: чрезвычайная требовательность к объему памяти. Поэтому, для обеспечения возможности получать последовательности из больших простых чисел, добавим в наш учебный пример еще одну функцию:
 +
 +
[[Изображение:LXF86_maxima03.png]]
 +
 +
Смысл, думаю, понятен по аналогии с предыдущей: теперь мы еще
 +
и ограничили возвращаемый список снизу.
 +
 +
Теперь, когда у нас уже есть '''primesbetween()''', первую функцию можно написать по «принципу чайника» – сведя задачу к предыдущей:
 +
 +
[[Изображение:LXF86_maxima04.png]]
 +
 +
Теперь вернемся к '''stringout()'''. Эта функция, как и многие другие,
 +
может принимать несколько различных вариантов аргументов, первым из которых всегда выступает имя файла для записи, а остальные отвечают за то, что же именно будет туда записано. В варианте
 +
'''stringout(имя-файла, [начало, конец])''' записаны будут ячейки ввода с
 +
номерами от «начала» до «конца» включительно:
 +
 +
[[Изображение:LXF86_maxima05.png]]
 +
 +
$ cat .maxima/primes.mac
 +
primes(n):=if integerp(n) then (if n <= 2 then [] else append(primes(prev_
 +
prime(n)),[prev_prime(n)]));
 +
primesbetween(n,m):=if integerp(n) and integerp(m) then (if m <= 2 or
 +
prev_prime(m) <= n then [] else append(primesbetween(n,prev_
 +
prime(m)),[prev_prime(m)]));
 +
 +
Как видите, по умолчанию вывод получается не слишком красивым, поэтому сразу рассмотрим один ключ, влияющий на его формат.
 +
Долго рассказывать о нем смысла нет, лучше показать на примере:
 +
 +
[[Изображение:LXF86_maxima06.png]]
 +
 +
$ cat .maxima/primes.mac
 +
primes(x):=if integerp(x)
 +
      then (if x <= 2 then []
 +
              else append(primes(prev_prime(x)),[prev_prime(x)]));
 +
primesbetween(n,m):=if integerp(n) and integerp(m)
 +
            then (if m <= 2 or prev_prime(m) <= n then []
 +
                    else append(primesbetween(n,prev_prime(m)),
 +
                            [prev_prime(m)]));
 +
 +
Представления о правилах отступов у создателей этой опции
 +
несколько специфичные, но тем не менее, результат стал намного читабельнее. Так что, если вы планируете сохранять выражения
 +
''Maxima'' не только для того, чтобы потом загружать их обратно, а желаете редактировать созданные файлы, я рекомендую вам прописать '''grind:true''' глобально в файле '''~/.maxima/maxima-init.mac'''.
 +
 +
Идем дальше. С помощью ключевого слова '''input''' можно выгрузить в файл все ячейки ввода разом:
 +
 +
[[Изображение:LXF97_maxima07.png]]
 +
 +
$ cat primes-sample.mac
 +
primes(n):=if integerp(n)
 +
      then (if n <= 2 then []
 +
              else append(primes(prev_prime(n)),[prev_prime(n)]));
 +
primesbetween(n,m):=if integerp(n) and integerp(m)
 +
            then (if m <= 2 or prev_prime(m) <= n then []
 +
                    else append(primesbetween(n,prev_prime(m)),
 +
                            [prev_prime(m)]));
 +
primes1(n):=primesbetween(1,n);
 +
stringout(“.maxima/primes.mac”,[1,2]);
 +
grind:true;
 +
stringout(“.maxima/primes.mac”,[1,2]);
 +
(N:[random(100000)],for i thru 9 do N:append(N,[N[i]+random(100000)]),N);
 +
(P:[],for i thru 10 do P:append(P,primesbetween(N[i]-50,N[i])),P);
 +
 +
Кроме input, есть еще два ключевых слова: '''functions''' и '''values'''.
 +
Первое позволяет записать определения всех функций, второе – присвоение всем символам выражений их текущих значений:
 +
 +
[[Изображение:LXF97_maxima08.png]]
 +
 +
$ cat .maxima/primes.mac
 +
primes(n):=if integerp(n)
 +
      then (if n <= 2 then []
 +
              else append(primes(prev_prime(n)),[prev_prime(n)]));
 +
primesbetween(n,m):=if integerp(n) and integerp(m)
 +
            then (if m <= 2 or prev_prime(m) <= n then []
 +
                    else append(primesbetween(n,prev_prime(m)),
 +
                            [prev_prime(m)]));
 +
primes1(n):=primesbetween(1,n);
 +
$ cat primes-sample.mac
 +
primes(n):=if integerp(n)
 +
      then (if n <= 2 then []
 +
              else append(primes(prev_prime(n)),[prev_prime(n)]));
 +
primesbetween(n,m):=if integerp(n) and integerp(m)
 +
            then (if m <= 2 or prev_prime(m) <= n then []
 +
                    else append(primesbetween(n,prev_prime(m)),
 +
                            [prev_prime(m)]));
 +
primes1(n):=primesbetween(1,n);
 +
N:[49900,61971,153219,244360,290427,347723,396481,465378,522906,568462];
 +
P:[49853,49871,49877,49891,61927,61933,61949,61961,61967,153191,
 +
244313,244333,
 +
  244339,244351,244357,290383,290393,290399,290419,347707,34771
 +
7,396437,
 +
  396443,396449,396479,465331,465337,465373,522857,522871,52288
 +
1,522883,
 +
  522887,568433,568439,568441,568453];
 +
 +
И кроме всего этого, функцию '''stringout()''' можно вызвать с непосредственным перечислением в аргументах конкретных выражений.
 +
В этом случае, надо заметить, будут сохраняться не ячейки, содержащие заданные выражения, а именно сами выражения. То есть, если
 +
перечислить символ, для которого задано значение, то в файл будет
 +
записано только это значение. С именами функций, заданными непосредственно, дело обстоит не лучше: функцию таким образом задать,
 +
по сути, вообще нельзя: если просто написать ее имя, то вместо функции будет подставлен одноименный символ (или его значение, если
 +
оно задано). Но из обеих ситуаций есть выход. Для функций – штатный: функция '''fundef''', которая принимает имя любой пользовательской
 +
функции и возвращает ее определение в точности в таком же виде, в
 +
каком оно было введено (или могло бы быть введено) в «командной
 +
строке» ''Maxima'', с точностью до пробелов:
 +
 +
[[Изображение:LXF86_maxima09.png]]
 +
 +
$ cat .maxima/primesbetween.mac
 +
primesbetween(n,m):=if integerp(n) and integerp(m)
 +
            then (if m <= 2 or prev_prime(m) <= n then []
 +
                    else append(primesbetween(n,prev_prime(m)),
 +
                            [prev_prime(m)]));
 +
$ cat .maxima/primes1.mac
 +
primes(n):=if integerp(n)
 +
      then (if n <= 2 then []
 +
              else append(primes(prev_prime(n)),[prev_prime(n)]));
 +
primes1(n):=primesbetween(1,n);
 +
 +
А для символов можно использовать небольшую хитрость: блокировать вычисление переданного выражения, а в нем написать сначала
 +
сам символ, а потом через двоеточие – его же, предварив знаком принудительного вычисления (два апострофа):
 +
 +
[[Изображение:LXF86_maxima10.png]]
 +
 +
  t:~$ cat random-primes.mac
 +
  P:[49853,49871,49877,49891,61927,61933,61949,61961,61967,153191,
 +
  244313,244333,
 +
    244339,244351,244357,290383,290393,290399,290419,347707,34771
 +
  7,396437,
 +
    396443,396449,396479,465331,465337,465373,522857,522871,52288
 +
  1,522883,
 +
    522887,568433,568439,568441,568453];
 +
 +
В довершение темы работы с файлами стоит обратить внимание еще на один момент: при загрузке файлы в текущем каталоге не ищутся – и как раз для него надо задавать путь, причем полный, а не через '''./имя-файла''':
 +
 +
[[Изображение:LXF86_maxima11.png]]
 +
 +
==«Прослушайте объявление»==
 +
 +
Теперь поговорим о функциях, позволяющих налагать определенные
 +
условия на выражения, которыми оперирует ''Maxima''. Таких функций существует две, и достаточно разноплановых; но определенная
 +
связь между ними есть, так как все условия, заданные ими на данный
 +
момент, хранятся в общей «базе». Первая из этих функций называется
 +
'''declare''' (объявлять). С ее помощью можно объявлять весьма разнооб-разные факты о произвольных символах или выражениях; синтаксис ее весьма прост: '''declare(имя, факт)''' или '''declare(имя1, факт1, имя2, факт2, ...)'''; факты задаются с помощью ключевых слов. Сами факты
 +
я бы разделил на три группы: «технические» факты ''Maxima'', позволяющие использовать наделенный ими символ некоторым специальным образом при вводе выражений; факты о символах (атомарных
 +
выражениях); и факты о значениях функций. К первым относятся, к
 +
примеру, свойства '''evflag''' и '''evfun''', о которых шла речь в описании функции '''ev'''; некоторые штатные функции обладают ими по умолчанию, а с помощью функции '''declare''' мы можем присвоить эти свойства любым
 +
другим, в том числе и пользовательским, функциям. Вторая группа
 +
фактов несет информацию о неизвестных; например, мы можем указать, что некоторая неизвестная является константой, или что ее значение – целое. И третья группа – примерно то же самое, но о функциях;
 +
примеры: четная функция '''(f(–x)=f(x))''', аддитивная '''(f(x+y)=f(x)+f(y))''' или
 +
целочисленная. Для краткости просто перечислим наиболее интересные из возможных фактов, сгруппировав соответственно трем упомянутым группам.
 +
 +
==Технические факты==
 +
 +
===evfun===
 +
 +
Позволяет применять функцию или переменную как опцию, то есть
 +
'''«выражение, имя-функции»''' вместо '''«имя-функции(выражение)»''' или
 +
'''«выражение, имя-переменной»''' вместо '''«имя-переменной:true; выражение»'''. Подробнее см. в [[LXF82:Maxima|LXF82]].
 +
 +
===bindtest===
 +
 +
Запрещает использовать символ в выражениях до присвоения ему
 +
значения. При таком использовании ''Maxima'' выдаст ошибку. Пример
 +
см. в документации.
 +
 +
===feature===
 +
 +
Делает заданное имя именем свойства (факта), что дает возможность
 +
использовать его точно так же, как все перечисленные здесь имена.
 +
 +
==Факты о символах==
 +
 +
===constant===
 +
 +
Имя трактуется как константа.
 +
 +
===scalar===
 +
 +
Имя трактуется как скалярная величина. На это также влияет флаг
 +
'''assumescalar''': если он равен '''true''', то все неопределенные символы воспринимаются как скаляры. Тут есть небольшая коллизия: если верить документации, то по умолчанию '''assumescalar''' равен '''false''', реально же в
 +
''Maxima 5.10.0'' он равен '''true'''.
 +
 +
[[Изображение:LXF86_maxima12.png]]
 +
 +
===nonscalar===
 +
 +
Имя трактуется как не-скалярная величина, то есть матрица или вектор.
 +
 +
===integer, noninteger===
 +
 +
Целое и нецелое число.
 +
 +
===even, odd===
 +
 +
Четное и нечетное целое число.
 +
 +
[[Изображение:LXF86_maxima13.png]]
 +
 +
==Факты о функциях==
 +
 +
===rassociative===
 +
 +
Объявляет функцию как «ассоциативную» по правому аргументу.
 +
 +
===lassociative===
 +
 +
Аналогично – по левому аргументу.
 +
 +
[[Изображение:LXF86_maxima14.png]]
 +
 +
===nary===
 +
 +
Объявляет «n-арную» функцию. Это и два предыдущих названия не
 +
совсем точны: n-арной правильно называть функцию от n аргументов,
 +
а лево- и право- ассоциативной – функции именно с односторонней
 +
ассоциативностью, то есть, для «лево-» '''f(f(a,b),c)[[Изображение:LXF85_maxima16.png]]f(a,b,c)[[Изображение:LXF85_maxima16.png]]f(a,f(b,c))'''. А
 +
в ''Maxima'' все три факта объявляют на самом деле полно-ассоциативную функцию от произвольного числа аргументов, а различаются только тем, как будут расставлены скобки по умолчанию.
 +
 +
[[Изображение:LXF86_maxima15.png]]

Версия 09:28, 23 декабря 2008


Учебник Maxima Максимум свободысимвольных вычислений

Содержание

Работа c файлами

ЧАСТЬ 6 Завершая этот длинный цикл статей, Тихон Тарнавский коснется вопросов работы с файлами, базой данных фактов и напишет собственную функцию символьного дифференцирования!

В прошлый раз мы остановились на возможностях программирования, предназначенных для написания собственных функций и модулей к Maxima – и теперь для их полноценного использования рассмотрим несколько инструментов работы с файлами, позволяющих сохранять и загружать эти функции и модули на диск и с диска. Далее речь пойдет о наложении определенных условий на неизвестные и значения функций. Напоследок познакомимся с функциями по работе... с функциями: это один из очень мощных инструментов, позаимствованных из функционального программирования; а также разберем несколько более крупных учебных примеров, использующих многое из изученного нами во всех статьях цикла.

Учимся читать и писать

Среди средств для операций с файлами функции с наиболее очевидными именами – save и load – имеют, вопреки привычной для Maxima логичности всех названий, различный контекст. Первая предназначена для выгрузки Maxima-выражений в виде исходных кодов на Lisp, так что если вы не знаток Lisp (да и реализации внутренних механизмов Maxima), то эта функция представляет лишь чисто академический интерес. Посему подробнее мы займемся другими функциями – для обработки так называемых пакетных (batch) файлов, хранящих выра жения уже в синтаксисе самой Maxima. А поскольку в виде таких файлов поставляется немалое количество функционала Maxima, то начнем с загрузки. И вот о второй из очевидно-именуемых функций здесь уже будет рассказано.

Функции чтения файлов с выражениями Maxima существует три: demo(имя-файла), batch(имя-файла) и batchload(имя-файла). Первая предназначена для загрузки так называемых демо-файлов, задуманных, как и явствует из названия, для демонстрационных примеров. Она загружает демо-файл и выполняет его в пошаговом режиме, ожидая нажатия Enter после выполнения каждой строки. В составе Maxima поставляется значительное количество демо-файлов; упоминания о них можно найти в документации, а сами файлы несложно обнаружить среди содержимого пакета maxima-share (либо, в случае отсутствия такового в вашем дистрибутиве, просто maxima) по их расширению – .dem.

Функция batch() загружает Maxima-файл с расширением .mac или .mc (от первоначального названия программы – Macsyma) и выполняет содержащиеся в нем выражения так, как если бы они вводились прямо в текущей сессии, то есть с отображением результата каждого выражения и назначением меток %iN, %oN. Функция batchload(), напротив, подгружает пакетный файл «молча»: все назначенные в нем функции и переменные становятся доступны, но результаты не видны, и весь хранимый ввод-вывод, включая значения символов % и _ и результаты, возвращаемые функцией %th(), остается тем же, что и до вызова.

Функции batch() и batchload() используют при поиске файлов для загрузки путь (точнее сказать, шаблон, потому как в нем содержатся не только имена каталогов, но и допустимые расширения файлов), который хранится в переменной file_search_maxima. По умолчанию эта переменная содержит все каталоги, в которые устанавливаются .mac-файлы из пакетов Maxima, а также ~/.maxima, предназначенный для пользовательских файлов. Для других функций загрузки существуют отдельные переменные: file_search_lisp и file_search_demo, смысл которых понятен из их названий.

Ну и под конец здесь нужно вспомнить о вышеназванной функции load. Она, фактически, является оберткой над двумя функциями: уже описанной выше batchload() и loadfile(), вторая, совершенно аналогично первой, загружает файл, но уже не с выражениями Maxima, а с исходным кодом Lisp, то есть является парной к функции save(). Функцию load() можно, в принципе, использовать вместо batchload(): путь file_search_maxima задан в ней раньше, чем file_search_lisp, так что в случае неоднозначности она будет загружать файлы Maxima; а кроме того, так короче.

Некоторый функционал Maxima содержится в неподгружаемых автоматически внешних файлах, которые, соответственно, нужно принудительно загрузить перед использованием:

LXF86 maxima01.png

Помимо ручной загрузки нужного файла, можно также настроить Maxima на автоматическую подгрузку в случае вызова заданной функции. Делается это так: setup_autoload(имя-файла,имена-функций); нужные функции здесь перечисляются через запятую прямо после имени файла. Удобнее, конечно, будет не вызывать функцию setup_autoload() вручную (так в ней и толку немного), а настроить Maxima на автоматический ее запуск при старте программы. Файл, который, при его наличии, вызывается при каждом запуске Maxima, называется maxima-init.mac и самое логичное для него местоположение – все тот же каталог ~/.maxima. Конечно, он может содержать не только вызовы функции setup_autoload(), а любые выражения Maxima, которые вы хотите выполнять при каждом ее запуске. Использование этой функции может сделать вашу работу с Maxima намного более удобной в том случае, если вы часто используете некоторые из внешних функций Maxima или функции, вами же и написанные.

Для полноценного чтения файлов всего сказанного уже вполне достаточно, теперь перейдем к записи в них. Тут нас в первую очередь интересует функция stringout(), которая позволяет выгружать в файл любые выражения и функции Maxima в точно таком виде, в каком их загружают функции demo(), batch() и batchload(). С ее помощью можно писать выражения, которые вы хотите иметь во внешнем модуле, находясь непосредственно в интерфейсе Maxima, с последующей записью в этот самый модуль. Для выгрузки функций в один из стандартных каталогов Maxima (самым логичным вариантом будет, пожалуй, упомянутый выше ~/.maxima) имя файла во всех вариантах вызова функции stringout() нужно задавать с полным путем; в случае задания имени без пути файл будет создан в текущем каталоге, то есть в том, откуда производился запуск Maxima.

Здесь, чтобы было интереснее и не приходилось писать в файлы всякую ерунду, немного прервемся и создадим пару небольших функций.

LXF86 maxima02.png

Эта функция возвращает список всех простых чисел, меньших чем заданное целое число. Сначала мы проверяем, является ли аргумент целым числом и делаем это простейшим образом: в случае невыполнения условия оператор if, напомню, вернет false. Генерируется список тоже самым простым и коротким в реализации способом – рекурсией. (примечание для людей, далеких от программирования: рекурсивная функция – это функция, вызывающая саму себя; чаще всего такие функции строятся по принципу индукции). Здесь используется функция Maxima по имени prev_prime(), которая возвращает простое число, предшествующее заданному целому.

У рекурсии, при всей ее простоте реализации, есть неоспоримый минус – только один, но весьма существенный: чрезвычайная требовательность к объему памяти. Поэтому, для обеспечения возможности получать последовательности из больших простых чисел, добавим в наш учебный пример еще одну функцию:

LXF86 maxima03.png

Смысл, думаю, понятен по аналогии с предыдущей: теперь мы еще и ограничили возвращаемый список снизу.

Теперь, когда у нас уже есть primesbetween(), первую функцию можно написать по «принципу чайника» – сведя задачу к предыдущей:

LXF86 maxima04.png

Теперь вернемся к stringout(). Эта функция, как и многие другие, может принимать несколько различных вариантов аргументов, первым из которых всегда выступает имя файла для записи, а остальные отвечают за то, что же именно будет туда записано. В варианте stringout(имя-файла, [начало, конец]) записаны будут ячейки ввода с номерами от «начала» до «конца» включительно:

LXF86 maxima05.png

$ cat .maxima/primes.mac
primes(n):=if integerp(n) then (if n <= 2 then [] else append(primes(prev_
prime(n)),[prev_prime(n)]));
primesbetween(n,m):=if integerp(n) and integerp(m) then (if m <= 2 or
prev_prime(m) <= n then [] else append(primesbetween(n,prev_
prime(m)),[prev_prime(m)]));

Как видите, по умолчанию вывод получается не слишком красивым, поэтому сразу рассмотрим один ключ, влияющий на его формат. Долго рассказывать о нем смысла нет, лучше показать на примере:

LXF86 maxima06.png

$ cat .maxima/primes.mac
primes(x):=if integerp(x)
      then (if x <= 2 then []
              else append(primes(prev_prime(x)),[prev_prime(x)]));
primesbetween(n,m):=if integerp(n) and integerp(m)
           then (if m <= 2 or prev_prime(m) <= n then []
                   else append(primesbetween(n,prev_prime(m)),
                           [prev_prime(m)]));

Представления о правилах отступов у создателей этой опции несколько специфичные, но тем не менее, результат стал намного читабельнее. Так что, если вы планируете сохранять выражения Maxima не только для того, чтобы потом загружать их обратно, а желаете редактировать созданные файлы, я рекомендую вам прописать grind:true глобально в файле ~/.maxima/maxima-init.mac.

Идем дальше. С помощью ключевого слова input можно выгрузить в файл все ячейки ввода разом:

Файл:LXF97 maxima07.png

$ cat primes-sample.mac

primes(n):=if integerp(n)
      then (if n <= 2 then []
              else append(primes(prev_prime(n)),[prev_prime(n)]));
primesbetween(n,m):=if integerp(n) and integerp(m)
            then (if m <= 2 or prev_prime(m) <= n then []
                    else append(primesbetween(n,prev_prime(m)),
                            [prev_prime(m)]));
primes1(n):=primesbetween(1,n);
stringout(“.maxima/primes.mac”,[1,2]);
grind:true;
stringout(“.maxima/primes.mac”,[1,2]);
(N:[random(100000)],for i thru 9 do N:append(N,[N[i]+random(100000)]),N);
(P:[],for i thru 10 do P:append(P,primesbetween(N[i]-50,N[i])),P);

Кроме input, есть еще два ключевых слова: functions и values. Первое позволяет записать определения всех функций, второе – присвоение всем символам выражений их текущих значений:

Файл:LXF97 maxima08.png

$ cat .maxima/primes.mac
primes(n):=if integerp(n)
      then (if n <= 2 then []
              else append(primes(prev_prime(n)),[prev_prime(n)]));
primesbetween(n,m):=if integerp(n) and integerp(m)
           then (if m <= 2 or prev_prime(m) <= n then []
                   else append(primesbetween(n,prev_prime(m)),
                           [prev_prime(m)]));
primes1(n):=primesbetween(1,n);
$ cat primes-sample.mac
primes(n):=if integerp(n)
      then (if n <= 2 then []
              else append(primes(prev_prime(n)),[prev_prime(n)]));
primesbetween(n,m):=if integerp(n) and integerp(m)
           then (if m <= 2 or prev_prime(m) <= n then []
                   else append(primesbetween(n,prev_prime(m)),
                           [prev_prime(m)]));
primes1(n):=primesbetween(1,n);
N:[49900,61971,153219,244360,290427,347723,396481,465378,522906,568462];
P:[49853,49871,49877,49891,61927,61933,61949,61961,61967,153191,
244313,244333,
  244339,244351,244357,290383,290393,290399,290419,347707,34771
7,396437,
  396443,396449,396479,465331,465337,465373,522857,522871,52288
1,522883,
  522887,568433,568439,568441,568453];

И кроме всего этого, функцию stringout() можно вызвать с непосредственным перечислением в аргументах конкретных выражений. В этом случае, надо заметить, будут сохраняться не ячейки, содержащие заданные выражения, а именно сами выражения. То есть, если перечислить символ, для которого задано значение, то в файл будет записано только это значение. С именами функций, заданными непосредственно, дело обстоит не лучше: функцию таким образом задать, по сути, вообще нельзя: если просто написать ее имя, то вместо функции будет подставлен одноименный символ (или его значение, если оно задано). Но из обеих ситуаций есть выход. Для функций – штатный: функция fundef, которая принимает имя любой пользовательской функции и возвращает ее определение в точности в таком же виде, в каком оно было введено (или могло бы быть введено) в «командной строке» Maxima, с точностью до пробелов:

LXF86 maxima09.png

$ cat .maxima/primesbetween.mac
primesbetween(n,m):=if integerp(n) and integerp(m)
           then (if m <= 2 or prev_prime(m) <= n then []
                   else append(primesbetween(n,prev_prime(m)),
                           [prev_prime(m)]));
$ cat .maxima/primes1.mac
primes(n):=if integerp(n)
      then (if n <= 2 then []
              else append(primes(prev_prime(n)),[prev_prime(n)]));
primes1(n):=primesbetween(1,n);

А для символов можно использовать небольшую хитрость: блокировать вычисление переданного выражения, а в нем написать сначала сам символ, а потом через двоеточие – его же, предварив знаком принудительного вычисления (два апострофа):

LXF86 maxima10.png

 t:~$ cat random-primes.mac
 P:[49853,49871,49877,49891,61927,61933,61949,61961,61967,153191,
 244313,244333,
   244339,244351,244357,290383,290393,290399,290419,347707,34771
 7,396437,
   396443,396449,396479,465331,465337,465373,522857,522871,52288
 1,522883,
   522887,568433,568439,568441,568453];

В довершение темы работы с файлами стоит обратить внимание еще на один момент: при загрузке файлы в текущем каталоге не ищутся – и как раз для него надо задавать путь, причем полный, а не через ./имя-файла:

LXF86 maxima11.png

«Прослушайте объявление»

Теперь поговорим о функциях, позволяющих налагать определенные условия на выражения, которыми оперирует Maxima. Таких функций существует две, и достаточно разноплановых; но определенная связь между ними есть, так как все условия, заданные ими на данный момент, хранятся в общей «базе». Первая из этих функций называется declare (объявлять). С ее помощью можно объявлять весьма разнооб-разные факты о произвольных символах или выражениях; синтаксис ее весьма прост: declare(имя, факт) или declare(имя1, факт1, имя2, факт2, ...); факты задаются с помощью ключевых слов. Сами факты я бы разделил на три группы: «технические» факты Maxima, позволяющие использовать наделенный ими символ некоторым специальным образом при вводе выражений; факты о символах (атомарных выражениях); и факты о значениях функций. К первым относятся, к примеру, свойства evflag и evfun, о которых шла речь в описании функции ev; некоторые штатные функции обладают ими по умолчанию, а с помощью функции declare мы можем присвоить эти свойства любым другим, в том числе и пользовательским, функциям. Вторая группа фактов несет информацию о неизвестных; например, мы можем указать, что некоторая неизвестная является константой, или что ее значение – целое. И третья группа – примерно то же самое, но о функциях; примеры: четная функция (f(–x)=f(x)), аддитивная (f(x+y)=f(x)+f(y)) или целочисленная. Для краткости просто перечислим наиболее интересные из возможных фактов, сгруппировав соответственно трем упомянутым группам.

Технические факты

evfun

Позволяет применять функцию или переменную как опцию, то есть «выражение, имя-функции» вместо «имя-функции(выражение)» или «выражение, имя-переменной» вместо «имя-переменной:true; выражение». Подробнее см. в LXF82.

bindtest

Запрещает использовать символ в выражениях до присвоения ему значения. При таком использовании Maxima выдаст ошибку. Пример см. в документации.

feature

Делает заданное имя именем свойства (факта), что дает возможность использовать его точно так же, как все перечисленные здесь имена.

Факты о символах

constant

Имя трактуется как константа.

scalar

Имя трактуется как скалярная величина. На это также влияет флаг assumescalar: если он равен true, то все неопределенные символы воспринимаются как скаляры. Тут есть небольшая коллизия: если верить документации, то по умолчанию assumescalar равен false, реально же в Maxima 5.10.0 он равен true.

LXF86 maxima12.png

nonscalar

Имя трактуется как не-скалярная величина, то есть матрица или вектор.

integer, noninteger

Целое и нецелое число.

even, odd

Четное и нечетное целое число.

LXF86 maxima13.png

Факты о функциях

rassociative

Объявляет функцию как «ассоциативную» по правому аргументу.

lassociative

Аналогично – по левому аргументу.

LXF86 maxima14.png

nary

Объявляет «n-арную» функцию. Это и два предыдущих названия не совсем точны: n-арной правильно называть функцию от n аргументов, а лево- и право- ассоциативной – функции именно с односторонней ассоциативностью, то есть, для «лево-» f(f(a,b),c)LXF85 maxima16.pngf(a,b,c)LXF85 maxima16.pngf(a,f(b,c)). А в Maxima все три факта объявляют на самом деле полно-ассоциативную функцию от произвольного числа аргументов, а различаются только тем, как будут расставлены скобки по умолчанию.

LXF86 maxima15.png

Персональные инструменты
купить
подписаться
Яндекс.Метрика